
Visualizations for User-supported State Space
Exploration of Goal Models

Yesugen Baatartogtokh, Irene Foster, Alicia M. Grubb
Department of Computer Science

Smith College, Northampton, MA, USA

amgrubb@smith.edu

Abstract—Automated analysis has been used in goal-oriented
requirements engineering (GORE) to evaluate scenarios and
make trade-off decisions. For higher complexity problems (e.g.,
backwards analysis), using a search-based solver may be more
efficient than custom algorithms. When these black-box solvers
produce a single solution, users may be suspicious about whether
the given answer is ideal or believable. Users would like to explore
the potential solutions but are prevented from doing so because
these inquiries often suffer from a state explosion problem.

In this RE@Next! paper, we introduce the use of valuation-
based filtering and coloring to assist users in understanding a
solution space and selecting custom states from it. We use the
concrete semantics of modeling requirements in the Evolving
Intentions framework and its associated goal modeling tool,
BloomingLeaf, to explore the application of these visualization
techniques. In our initial evaluation, we demonstrate how these
techniques can be used on a fully worked out example. We
conduct initial measurements of the time savings and state space
reduction created by the valuations and color filtering, and
discuss future directions of this project.

I. INTRODUCTION & MOTIVATION

Goal-oriented requirements engineering (GORE) provides

stakeholders with analysis tools needed to make trade-off deci-

sions in the early phases of a project [1], [2], [3]. GORE frame-

works allow stakeholders to document their requirements and

represent them through goal models, which consist of actors

and intentions (e.g., goals) that are connected via relationships.

Users create models for the purpose of considering how alter-

native project scenarios impact the needs of stakeholders, who

depend on the system. Individual intentions in these models

can then be given an evaluation label to describe whether

the intention is fulfilled with respect to the current scenario

under consideration. Goal model analysis enables stakeholders

to understand and answer “what-if” questions by exploring

alternate scenarios [4], including evolving scenarios [5], [6].

In this paper, we use the Evolving Intentions framework [6]

and its associated tool, called BloomingLeaf [7], to look at

how project scenarios evolve over time.

Depending on the approach, model analysis may be manual,

semi-automatic involving user intervention, or fully auto-

matic [2]. For automatic algorithms, results may be deter-

ministic (e.g., forward propagation, from leaf to root nodes)

or non-deterministic with multiple solutions (e.g., backward

propagation, from root to leaf nodes). As previously demon-

strated, solvers can be used to find a satisfying assignment

for the evaluation labels in the model [4], [8], [9]. The model

Legend —

Fig. 1: Fragment of goal model for processing and approving

income limits of student loan borrowers via IRS Form 1040.

structure, as well as the intention evaluation labels, act as the

constraints placed upon the solver. When analyzing how the

evaluation labels of a goal model change over time, a satisfying

assignment for each intention must be found at each time

point, creating a solution space consisting of multiple paths

that the model can take [6]. In this paper, we investigate the

problem of solution space exploration when the content of

each state is the satisfying assignment for the entire model.

When a black-box solver produces only a single solution,

users may be suspicious about whether the proposed answer

is ideal or believable, given the provided constraints. As well,

users may want to explore other results that satisfy the same

criteria or create their own custom paths. Ideally, users would

like to explore the potential solutions. However, depending

on the size of the solution space (i.e., state explosion prob-

lem [10]) and the complexity of any individual state, current

visualization techniques (e.g., [11]) are insufficient.

Illustrative Example. Consider the software team at the US

Department of Education working to implement the 2022
Biden-Harris Administration Student Debt Relief Plan [12].

Fig. 1 shows the goal model created in BloomingLeaf by

analysts as part of their requirements process. As part of this

temporary program, roughly 32 million borrowers are required

to send in their most recent tax return (via IRS Form 1040)

to verify they are within the income limit and qualify for

281

2023 IEEE 31st International Requirements Engineering Conference (RE)

2332-6441/23/$31.00 ©2023 IEEE
DOI 10.1109/RE57278.2023.00036

20
23

 IE
EE

 3
1s

t I
nt

er
na

tio
na

l R
eq

ui
re

m
en

ts
 E

ng
in

ee
rin

g
Co

nf
er

en
ce

 (R
E)

 |
 9

79
-8

-3
50

3-
26

89
-5

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

RE
57

27
8.

20
23

.0
00

36

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on April 24,2025 at 17:45:15 UTC from IEEE Xplore. Restrictions apply.

the relief payment [12]. The team is evaluating trade-offs for

processing the 1040 forms. This decision is illustrated by the

top-level goal Process and Approve 1040-Income being or-
decomposed into Manual Review and Auto Review, with each

of these options being further decomposed into their sub-tasks.

In simulating this model over time, the analysts want to

answer the question, “Is conducting a Manual Review, Auto
Review, or a combination of the two best to ensure that the

applications are processed correctly (i.e., satisfying Accuracy
of Review) with fast turn-around for borrowers (i.e., satisfying

Fast Responses to Borrowers)?”. The solver in BloomingLeaf

returns one possible path of eight steps (the first four steps

are shown in Fig. 2), where each individual intention in the

model changes over time according to its given constraints;

yet, there are numerous additional valid solutions. In this

initial solution, the Manual Review option becomes satisfied

first (see t1 in Fig. 2(b)), denoted by the dark blue or (F ,

⊥) as seen in the legend in Fig. 3. At this time, Accuracy
of Review is satisfied and Fast Responses to Borrowers is

conflicted, which prompts the team to want to know whether

both these soft goals can be satisfied. Additionally, the team

wants to explore creating two paths, one where Get Contract
with Vendors is satisfied and the other where Build Algorithm In-
house is satisfied. BloomingLeaf allows users to answer these

types of questions through the Next States view, where users

can get all possible states for a given time point in the model

evolution. However, other than clicking through each possible

state, it is unclear how the user can make an informed choice.

The state of the art in visualizing constraint programing

looks at analyzing the decisions made by the solver [11].

Seeing a high-level view of the solution space does not enable

users to interpret which elements have specific valuations.

Verbeek et al. used Petri net models to give users a sense of the

valuations of attributes in a solution space [13], [14], but this

approach does not scale with more complex models with many

attributes. Within GORE, Hu and Grubb proposed a simple set

of filters to reduce the domain and solution space [15]. These

filters allow state-reduction based on the whole model, such

as removing any states that contain a conflicted satisfaction

value, but users cannot filter by individual intentions. These

filters are generic and eliminate unhelpful states, but do not

provide insights or assist the user in selecting a future state.

Contributions. In this RE@Next! paper, we propose the use

of valuation-based filtering and coloring to assist users in

exploring and selecting states from a solution space more

efficiently. We use the concrete semantics of the Evolving

Intentions framework, to demonstrate the applicability of this

approach, yet these visualization techniques can be adapted to

other areas in RE.

In the remainder of this paper, we review relevant back-

ground in Sect. II, present our filtering and coloring techniques

in Sect. III, and provide an initial evaluation in Sect. IV. We

complete our presentation with a discussion of related work

in Sect. V, and a description of our future development and

validation plans in Sect. VI.

II. EVOLVING GOAL MODEL REPRESENTATION

In this section, we define an evolving goal model and

describe how it is captured as a constraint satisfaction problem

(CSP) [16]. Within the Evolving Intentions framework [6], an

evolving goal graph M is a tuple 〈A,G,R,EF,C,maxTime〉,
where A is a set of actors, G is a set of intentions (e.g., goals,

tasks, and soft goals, see legend in Fig. 1), R is a set of

relationships over intentions, EF is a set of evolving functions,

C is a set of constraints over the time points in the graph, and

maxTime ∈ N
+ is the maximum absolute time over which any

time point is defined (adapted from [6]). For the purposes of

our work, M is a graph (henceforth called a model) consisting

of intentions g ∈ G and these intentions are assigned evidence

pairs as valuations. An evidence pair is a pair (s, d) where

s ∈ {Full (F),Partial (P),None (⊥)} is the level of evidence

for and d ∈ {F ,P ,⊥} is the level of evidence against the

fulfillment of g. The cross product of s and d results in nine

valuations, denoted as the universe E (see legend in Fig. 3).

The evidence pair assignments for intentions are determined

by the model constraints defined in R,EF, and C.

For example, the model fragment in Fig. 1 illustrates an

evolving goal model M with one actor and 18 intentions in G.

The Current Staff Levels intention has the evidence pair (F , ⊥)

to indicate that it is fully satisfied. Other letter markings (e.g.,

C, DS) denote evolving functions that constrain the valuation

of the intentions in EF. Intentions are also constrained by

and/or decomposition and contribution links (e.g., ++S) in R.

The model can then be simulated over a series of time points

Π, known as a time point path [6]. For a given time point

t ∈ Π, the evaluation of g at t, is a mapping G × Π →
E ∪ {⊥}. Thus, a complete evaluation of M at t is the total

mapping G× t → E resulting from the repeated application of

all constraints within R, EF, and C. Simply put, a complete

evaluation path is the complete evaluation of M at each time

point in Π, which we represent as a CSP.

A CSP is defined as a triple 〈V ,D,Q〉, where V is a set

of variables, D is a set of the respective domains of values,

and Q is a set of constraints [16]. When constructed as a CSP,

our aim is to find an evaluation for each intention in the graph

(g ∈ G) at each time point (t ∈ Π). Thus, the CSP variables V
are a set of intentions at all time points (i.e., |V | = |G| ∗ |Π|).
Initially, the domain d of each variable v is the set of evidence

pairs (E). Each element in R,EF, and C forms constraints Q
over the elements in V . Thus, the valuation of all variables in

|V | is a complete evaluation path of model M .

For example, the CSP solver in BloomingLeaf generates

a simulated time point path Π for the model M in Fig. 1,

consisting of eight timepoints t0–t7. As introduced in Sect. I,

the team wants to build a path where Build Algorithm In-house
is satisfied. They agree with the selected results for t0–t2
(see Fig. 2), but want to find an alternative solution for the

assignments in t3. By constraining the acceptable values for

the model M at t0–t2, we update our CSP solver request in

BloomingLeaf to return all possible solutions for t3, discussed

in the next section.

282

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on April 24,2025 at 17:45:15 UTC from IEEE Xplore. Restrictions apply.

(a) t0 (b) t1 (c) t2 (d) t3

Fig. 2: Fragment of one possible simulation path of the Student Aid model, with EVO color visualization applied (see legend

in Fig. 3), showing the evolution of intentions over time points t0 to t3.

Legend (E) —

Fig. 3: BloomingLeaf’s Next States view of Student Aid model, with EVO % mode selected and two intention filters applied.

III. FILTERS & VISUALIZATIONS

In this section, we describe two techniques to assist users

in creating their own path from a solution space of an

evolving model. Fig. 3 shows a screenshot of our extension of

BloomingLeaf in the state exploration view (called the Next
States window). BloomingLeaf invokes the JaCoP constraint

solver [17] to find satisfying assignments for each variable

and displays the first option for the selected time point (t3)

on the center canvas of the Next State window. The left panel

shows the existing filters, as presented in [15]. The user can

select from the many possible states or incrementally navigate

through each state with arrows in the left panel. The new Color

Visualization is shown in the top toolbar (called EVO, ‘%’

selected) and the valuation filtering is shown in the right panel.

Color Visualization. Each evidence pair (see Sect. II and

legend in Fig. 3) is assigned a color, where blue denotes

satisfied, red denotes denied, and purple denotes conflicting

values with both evidence for and against the fulfillment of

the intention [18]. The more saturated (or darker) the color

shade, the stronger the evidence (e.g., F is darker than P).

We introduce two color overlays to assist users in under-

standing the model and selecting future states. State mode (not

shown) colors the background of each intention in the graph

with the color associated with the assigned evidence pair. This

view is similar to the coloring applied to the model path in

Fig. 2. Seeing the colors for each intention allows users to

more quickly understand the valuations in the viewed state

without reading each of the evidence pairs. The second is the

percentage mode, which is selected in the EVO slider on the

top toolbar and shown on the canvas in Fig. 3. When percent

mode is selected, the background of each intention is colored

with the percentage of states in the solution space where the

intention has each evidence pair assignment.

Filtering Intention Valuations. To allow users to sort through

and find desired solutions, we added an additional panel on

the right-side of the window that enables the user to add and

283

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on April 24,2025 at 17:45:15 UTC from IEEE Xplore. Restrictions apply.

remove filters (i.e., Intention Filters). Unlike the filter on the left

panel (from [23]), it filters solutions based on the valuation of

individual intentions, returning only solutions where intentions

have the specified evidence pair. Users are able to add separate

filters to different intentions, as well as filter multiple evidence

pairs for a single intention. This act reduces the solution space,

allowing users to focus only on the options that meet their

aims without having to manually evaluate all permutations

of an intention. For example, when Build Review Algorithm
is selected on the center canvas in Fig. 3 (see red box), then

the Intention Filter panel is populated with the information for

this element and allows the user to add a new filter.

Usage Scenario. While each of these filters may seem sim-

plistic on their own, taken together they form a powerful

mechanism for users to create and validate their own paths.

In the illustrative example, after generating the path shown in

Fig. 2 (see Sect. II), the user is unsatisfied with the model

at t3. Specifically, the user wants to find a path where Get
Contract with Vendors is not the next step, but perhaps Build
Review Algorithm is satisfied instead. When the user explores

all possible states for t3, there are 864 states (not shown).

First, we recommend turning on EVO % mode to see a high-

level view of the solution space. Since the user is looking for a

state where Build Review Algorithm is satisfied, they select the

node and choose Satisfied (F ,⊥) in the right panel, limiting

the number of states to 108. With a second valuation filter

applied to Get Contract with Vendors, which is shown in Fig. 3,

there are 54 possible states. From Fig. 3 the user can see that

much of the variability in the remaining states exists within a

few elements. If the user had applied the valuation of None
(⊥,⊥) to Hire and Train New Workers, then only 9 similar states

remain. Finally, the user turns on EVO in State mode, and

clicks through the remaining states and selects #5 as their

preferred one. By selecting Save & Close (see Fig. 3) the CSP

solver generates the remainder of the path given this updated

state. Alternatively, the user could click Explore Next States
to generate all possible solutions for the next time point (t4),

given the updated choices for t3.

IV. DISCUSSION & VALIDATION

Benefits. Our work allows for the more efficient exploration

of a solution space. The intention valuation filters reduce the

number of states in the solution space that need to be manually

considered. Valuation-based coloring through EVO State mode

may allow for faster processing of evidence pairs in states

since users do not need to read each evidence pair label. The

EVO % mode shows an overview of the composition of the

state space and allows users to verify the absence of a state.

For example, given the filters applied in Fig. 3, no state exists

where Accuracy of Review is Denied (i.e., colored red).

Limitations. Our current implementation is limited to the

Evolving Intentions framework and needs to be expanded to

work with other CSPs. Within this framework, we require

users to generate a full path before exploring the state space.

Another design choice would allow users to explore states

TABLE I: Rate of state review with and without EVO.

Group Task
Rate of Review (states per second)

0 1 2-Close 2-Distant 3

Author Base 5.37 4.08 4.03 2.08 0.66

First EVO 5.78 5.64 4.89 4.98 4.69

EVO Base 5.12 4.69 3.76 3.16 3.68

First EVO 5.27 5.00 4.30 3.42 3.63

Base Base 5.83 3.52 2.53 1.91 1.94

First EVO 5.19 3.8 3.7 3.28 3.00

from the initial model. Further, the color palette may not be

intuitive across an international audience. We are extending

our implementation to enable users to select the palette colors,

including a palette for individuals with a color vision defi-

ciency. Finally, there is an upper bound on the number of states

our solver will generate before timing out. The illustrative

example without any MP and DS functions produces 1,740,288

states if strong conflict (F ,F) is removed from the domain

d of each variable v and a memory error if kept. In these

situations, it is often the case where the scenario has not been

fully explored by the users. We investigate a methodology to

help users explore state spaces more efficiently.

Initial Evaluation. Our initial evaluation work focused on

demonstrating the feasibility and effectiveness of our ap-

proach. We took measurements of the time savings and state

space reductions created by the valuations and color filtering.

Supplemental information for this evaluation is available at:

https://doi.org/10.35482/csc.003.2023.

Color Visualization: In a recent investigation, we found that

using EVO increased the speed for users to answer questions

about goal models [19]. We hypothesized that using EVO in

the Next States window enables users to click through states

faster than without using EVO. Thus, we collected initial

measurements of the time it took individuals to physically

click through the states in search of a solution with and without

EVO State mode enabled. Tbl. I lists the averaged number

of states that were reviewed per second for three groups.

Author, see first column in Tbl. I, represents expert clicking

by one of the authors of this paper. The other two groups

are averages of three undergraduate lab members with one

group using EVO First, while the other group (i.e., Base First)
were tested without EVO first. For each group, we measured

finding a solution given specific evidence pairs for zero, one,

two, or three intentions, including two intentions that were

close and distant from one another. We surmised that we may

observe cognitive processing delays by comparing the speed

of searching for close and distant intentions.

Our observations are inconclusive. The Author group was

faster with EVO than without EVO in all cases; yet, this has

the obvious problem of unconscious researcher bias. The two

student groups were often faster using EVO; however, there

was significant variation between individuals. Future studies

should account for individual variability, while controlling for

fatigue and carryover effects [20], as well as the interaction

between intention filters and state selection with/without EVO.

284

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on April 24,2025 at 17:45:15 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Best/worst case percentage reduction in states.

Model 1-Worst 1-Best 2-Worst 2-Best

1. Grad 80.0% 98.9% 99.2% 99.6%

2. WME 6.3% 98.8% 30.4% 99.7%

3. Ready4Work 37.7% 96.1% 68.8% 98.7%

4. Course 88.4% 99.0% 98.0% 99.6%

5. Debt 50.0% 96.1% 75.0% 98.7%

TABLE III: Average user percentage reduction in states using

one, two, and three valuation filters.

Model 1 Filter 2 Filters 3 Filters

1. Grad 96.4% 99.6% 99.9%

2. WME 58.7% 87.6% 96.2%

3. Ready4Work 80.5% 91.2% 96.9%

4. Course 97.5% 98.9% 99.5%

5. Debt 81.9% 91.4% 97.7%

Intention Valuation Filtering: To test the effectiveness of ap-

plying intention valuation filters, we measured the percentage

reductions in the size of the solution space after applying one

to two filters on five different models, with a maximum model

size of 20 intentions. Depending on the number of constraints

in Q, the number of initial states could be anywhere between

one hundred and a million. Tbl. II lists the percentage of states

that are removed after applying one and two filters in the best

case and worst case, based on our own expert judgement. We

chose these cases based on visual inspection of the EVO %

mode. From Tbl. II, we observe that with a variety of models,

in the best case, we reduce the number of states by 96-98%

with one intention and 98-99% with two intentions. The worse

case reductions were as low as 6%, with averages between 50

and 75%, which indicates that much of the reduction comes

from the user choosing an appropriate intention.

To get a sense of how users would apply filters, we asked

five lab members to apply three filters to the same five models,

based on their intuitions after examining each model. Tbl. III

lists the average percentage reductions after applying one to

three filters. These average percent reductions are consistent

with those in Tbl. II. While state space reduction depends on

the users’ appropriate choice of a filter, on average, valuation-

based filtering provides a 90% reduction in the solution space

after two filters have been applied. In summary, intention

valuation filtering reduces the state space significantly by

removing undesired states, though its efficacy depends on the

user’s goals and choice in applying an appropriate filter.

Threats and Future Validation: Our initial data collection

was never intended as empirical validation. Our main threat is

that our evaluation was completed by the authors of this paper

and members of our lab. With three people per group for the

EVO evaluation and five people total for the filtering evalua-

tion, our sample size was insufficient to make conclusions. In

future work, we plan a large-scale study with plausible subjects

in a setting that is reflective of how stakeholders would learn

to use and apply these methods in the “real world”. Further

experiments with different populations, problem domains, and

contexts will be needed, as well as validating EVO Percent

mode. For EVO State mode, further exploration is required to

determine whether measuring clicking speed over states per

second is an appropriate measurement, as subjects’ fatigue and

attention span may make their clicking inconsistent.

V. RELATED WORK

Goal Modeling. Prior work in GORE investigated improving

the interpretability of goal model analysis. Horkoff and Yu

first investigated highlighting root/leaf nodes and conflicting

alternatives in goal graphs to assist users in understanding

analysis tasks [21]. Reddivari et al. investigated using visual

analytics techniques to help in requirements negotiation [22].

More recently, Oliveira et al. used RGB values to color nodes

in non-functional requirements models based on their quan-

titative valuations [23]. Amyot et al. used colors to visualize

analysis results in GRL using the jUCMNav tool [2], while

TimedGRL used color in heat maps to visualize evolving GRL

goal models [5]. Varnum et al. proposed coloring nodes within

qualitative goal models to assist users in interpreting the results

of path-based analysis [18]. In this paper, we adopt the initial

color scheme proposed by Varnum et al. as we use the same

universe of evidence pairs. As already stated in Sect. I, we

reimagine the work of Hu and Grubb, who reduced the size

of a CSP domain and solution space with generic filters [15].

Other work in GORE has used constraint programming

for model optimization. Anda combined GRL models and

cyber-physical systems to integrate social concepts into the

requirements activities for these systems [24]. Alwidian pro-

posed union models to improve the efficiency of analysis by

simultaneously analyzing related elements in goal models [9].

Exploring and Visualizing State Spaces. There has been

significant work on visualizing and debugging constraint pro-

grams [25]. Researchers investigated visualizing search trees

(e.g., [26]) and global constraints (e.g., [27]), with later work

focusing on explaining and comparing various algorithms for

constraint programming (CP). Freuder et al. generated expla-

nations for solving methods in the form of trees [28]. Dooms et

al. created a generic approach to visualize constraint-based

local-search [29]. Li and Epstein provided high-level visuals

of the search space to inform the guided search of CSPs [30].

Simonis et al. created a generic visualization of CP problems

for postmortem analysis [11].

Color has been used to visualize and explore decision trees.

Rojas and Villegas used color to enhance the weights of

nodes in 2D and 3D decision trees, allowing users to visually

identify weights associated with a node [31]. Closer to our

investigation, Verbeek et al. enabled users to explore state

spaces via the attributes of the system and “get a feeling” for

their behavior [13], [14]. In addition to visualizing the graph of

states, Verbeek et al. generated Petri net models from the state

space to give users a deeper understanding of the valuations

of attributes. Thus, while there has been a consistent effort to

visualize the decisions of the solver, there is limited work on

visualizations for the purpose of making human decisions, a

significant area for future exploration.

285

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on April 24,2025 at 17:45:15 UTC from IEEE Xplore. Restrictions apply.

VI. SUMMARY AND FUTURE PLANS

In this paper, we introduced the use of valuation-based

filtering and coloring to assist users in exploring a solution

space and selecting custom states from it. We demonstrated

the use of these techniques through our illustration of the

Student Aid model. Our initial measurements with authors

and lab members showed a greater than 90% reduction in the

number of states viewable by the user with valuation filtering

after two filters have been applied, although this depends on

the users’ choice. Given the threats described in Sect. IV and

mixed EVO results, further study is required to validate our

initial observations. In this work, we mitigate the issue of

navigating explosive state spaces when the content of each

state is an entire model. We see our visualizations as new

avenues for interpreting solutions in other areas of GORE.

Our current implementation is limited to the Evolving

Intentions framework, which requires users to generate a full

path before exploring the state space. Additionally, there is an

upper bound on the number of states our solver will generate

before timing out due to incomplete scenario specifications.

Future work will develop a methodology to assist users in fully

describing scenarios and tooling to generate paths from the

initial state. The models used in this paper were not reflective

of “real world” scenarios. Future validation includes evaluating

the scalability of these visualization techniques.

We also intend to conduct a user-validation study to measure

the efficiency gains of these filters and visualization techniques

on the Evolving Intentions framework, as well as the usability

of our extensions to BloomingLeaf. This study will include

EVO Percent mode to fully understand the efficacy of EVO.

Further, we are extending our EVO color scheme to enable

users to select from multiple color palettes including a palette

for individuals with a color vision deficiency. Other GORE

frameworks support actor evaluations [32]. Adding actor-

level filtering may make our methods more applicable across

different frameworks. Finally, we make intention filtering more

expressive, by adding boolean and comparison operators.

Acknowledgments. We thank our lab members for their

assistance. This material is based upon work supported by

the National Science Foundation under Award No. 2104732.

REFERENCES

[1] P. Giorgini, J. Mylopoulos, and R. Sebastiani, “Goal-oriented Require-
ments Analysis and Reasoning in the Tropos Methodology,” Engineering
Applications of Artificial Intelligence, vol. 18, no. 2, pp. 159–171, 2005.

[2] D. Amyot, S. Ghanavati, J. Horkoff, G. Mussbacher, L. Peyton, and
E. Yu, “Evaluating Goal Models Within the Goal-Oriented Requirement
Language,” International Journal of Intelligent Systems, vol. 25, no. 8,
pp. 841–877, 2010.

[3] J. Horkoff, F. B. Aydemir, E. Cardoso, T. Li, A. Maté, E. Paja,
M. Salnitri, L. Piras, J. Mylopoulos, and P. Giorgini, “Goal-oriented
Requirements Engineering: An Extended Systematic Mapping Study,”
Requirements Engineering, vol. 24, no. 2, pp. 133–160, 2019.

[4] J. Horkoff and E. Yu, “Interactive Goal Model Analysis For Early
Requirements Engineering,” Requirements Engineering, vol. 21, no. 1,
pp. 29–61, 2016.

[5] Aprajita, “TimedGRL: Specifying Goal Models Over Time,” Master’s
thesis, McGill University, 2017.

[6] A. M. Grubb and M. Chechik, “Formal Reasoning for Analyzing Goal
Models that Evolve over Time,” Requirements Engineering, vol. 26,
no. 3, pp. 423–457, 2021.

[7] ——, “BloomingLeaf: A Formal Tool for Requirements Evolution over
Time,” in Proc. of RE’18: Posters & Tool Demos, 2018, pp. 490–491.

[8] G. Mathew, T. Menzies, N. Ernst, and J. Klein, “Shorter Reasoning
About Larger Requirements Models,” in Proc. of RE’17, 2017.

[9] S. Alwidian, “Union Models: Support of Variability Modeling and
Efficient Reasoning About Model Families Over Space and Time,” Ph.D.
dissertation, University of Ottawa, 2020.

[10] E. M. Clarke, W. Klieber, M. Novacek, and P. Zuliani, “Model Checking
and the State Explosion Problem,” in Tools for Practical Software
Verification, ser. LNCS 7682. 154-163, 2012, pp. 1–30.

[11] H. Simonis, P. Davern, J. Feldman, D. Mehta, L. Quesada, and M. Carls-
son, “A Generic Visualization Platform for CP,” in Principles and
Practice of Constraint Programming, 2010, pp. 460–474.

[12] Federal Student Aid, An Office of the U.S. Department of
Education, “One-Time Student Loan Debt Relief,” Online at
https://studentaid.gov/debt-relief-announcement/one-time-cancellation,
2022, accessed 10/01/2022.

[13] H. Verbeek, A. Pretorius, W. van der Aalst, and J. van Wijk, “On Petri-
net Synthesis and Attribute-based Visualization,” in Proc. of PNSE’07
Workshop, 2007, pp. 127–141.

[14] H. Verbeek, A. Pretorius, W. Van der Aalst, and J. van Wijk, “Visualizing
State Spaces with Petri Nets,” Computer Science Report, vol. 7, no. 01,
2007.

[15] B. C. Hu and A. M. Grubb, “Support for User Generated Evolutions of
Goal Models,” in Proc. of MiSE’19 Workshop, 2019, pp. 1–7.

[16] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.
Prentice Hall, 2010, ch. 6 Constraint Satisfaction Problems.

[17] K. Kuchcinski and R. Szymanek, “JaCoP - Java Constraint Programming
solver,” http://jacop.osolpro.com, 2016, accessed: 2016-02-21.

[18] M. H. Varnum, K. M. B. Spencer, and A. M. Grubb, “Towards an
Evaluation Visualization with Color,” in Proc. of iStar’20 Workshop,
2020, pp. 79–84.

[19] Y. Baatartogtokh, I. Foster, and A. M. Grubb, “An Experiment on the
Effects of using Color to Visualize Requirements Analysis Tasks,” in
Proc. of RE’23, 2023.

[20] S. Vegas, C. Apa, and N. Juristo, “Crossover Designs in Software
Engineering Experiments: Benefits and Perils,” IEEE Transactions on
Software Engineering, vol. 42, no. 2, pp. 120–135, 2016.

[21] J. Horkoff and E. Yu, “Visualizations to Support Interactive Goal Model
Analysis,” in Proc. of REV’10 Workshop, 2010, pp. 1–10.

[22] S. Reddivari, S. Rad, T. Bhowmik, N. Cain, and N. Niu, “Visual
Requirements Analytics: A Framework and Case Study,” Requirements
Engineering, vol. 19, no. 3, pp. 257–279, 2014.

[23] R. F. Oliveira and J. C. S. do Prado Leite, “Using Colorimetric Concepts
for the Evaluation of Goal Models,” in Proc of MoDRE’20, 2020, pp.
39–48.

[24] A. A. Anda, “Combining Goals and SysML for Traceability and
Decision-Making in the Development of Adaptive Socio-Cyber-Physical
Systems,” Ph.D. dissertation, University of Ottawa, 2020.

[25] P. Godefroid, “Model Checking for Programming Languages Using
VeriSoft,” in Proc. of POPL’97, 1997, pp. 174–186.

[26] H. Simonis and A. Aggoun, “Search-tree Visualisation,” in Analysis and
Visualization Tools for Constraint Programming. Springer, 2000, pp.
191–208.

[27] P. Deransart, M. V. Hermenegildo, and J. Małuszynski, Eds., Analysis
and Visualization Tools for Constraint Programming: Constraint Debug-
ging, ser. LNCS 1870. Springer, 2000.

[28] E. C. Freuder, C. Likitvivatanavong, and R. J. Wallace, “Deriving
Explanations and Implications for Constraint Satisfaction Problems,” in
Proc. of CP 2001, 2001, pp. 585–589.

[29] G. Dooms, P. Van Hentenryck, and L. Michel, “Model-Driven Visual-
izations of Constraint-Based Local Search,” in Proc. of CP 2007, 2007,
pp. 271–285.

[30] X. Li and S. L. Epstein, “Visualization for Structured Constraint
Satisfaction Problems,” in Proc. of AAAI’10 Workshops, 2010.

[31] W. A. C. Rojas and C. M. Villegas, “Graphical Representation and
Exploratory Visualization for Decision Trees in the KDD Process,” in
Proc. of IC-ININFO’12, 2012.

[32] X. Franch, G. Grau, and C. Quer, “A Framework for the Definition of
Metrics for Actor-Dependency Models,” in Proc. of RE’04, 2004, pp.
348–349.

286

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on April 24,2025 at 17:45:15 UTC from IEEE Xplore. Restrictions apply.

