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Abstract—The development of high-quality software depends
on precise and comprehensive requirements that meet the objec-
tives of stakeholders. Goal modeling techniques have been de-
veloped to fill this gap by capturing and analyzing stakeholders’
needs and allowing them to make trade-off decisions; yet, goal
modeling analysis is often difficult for stakeholders to interpret.
Recent work found that when subjects are given minimal training
on goal modeling and access to a color visualization, called
EVO, they are able to use EVO to make goal modeling decisions
faster without compromising quality. In this paper, we evaluate
the robustness of the empirical evidence for EVO and question
the underlying color choices made by the initial designers of
EVO. We conduct a pseudo-exact replication (n = 60) of the
original EVO study, varying the experimental site and the study
population. Even in our heterogeneous sample with less a priori
familiarity with requirements and goal modeling, we find that
individuals using EVO answered the goal-modeling questions
significantly faster than those using the control, expanding the
external validity of the original results. However, we find some
evidence that the chosen color scheme is not intuitive and make
recommendations for the goal modeling community.

Index Terms—Requirements, Goal Modeling, Replication

I. INTRODUCTION

Requirements engineering (RE) is important for the de-
velopment of software [1]. RE methods allow developers to
identify, document, and manage the specifications of software
systems under consideration, especially in the early stages
of a project. For example, goal modeling approaches to RE
can help stakeholders reason about trade-offs in the design
of software systems and understand the dependencies of such
systems [2], [3]. Yet, these approaches have not seen expansive
adoption among practitioners, due to the complex nature of
building models and understanding their analysis [4].

One approach to assisting users in understanding goal mod-
els has been the introduction of color to communicate whether
elements in a goal model are satisfied or not, and most goal
modeling tools (e.g., [5]–[9]) have implemented this feature.
Other tools have used colors to identify aspects of the model
(e.g., root/leaf nodes [10], legal requirements [11]). When
researchers validate these approaches they analyze them in
the context of the larger tool and do not isolate the coloration
as a factor. We consider two approaches to color valuations
in goal models. A green-red color scheme is quite common,
where green and red denote the colors of a traffic light [12]
and where blue denotes conflict [7]. A blue-red color scheme

has also been used, where blue is satisfied, red is denied,
and purple (i.e., blue + red) is conflict [9]. In the blue-red
scheme, blue is used to assist color deficient users; yet, we
hypothesize this choice makes the scheme less intuitive for a
general audience.

While there is substantial research on the use of color in
data visualizations [13], there is little empirical evidence to
validate the use of color in goal model analysis. Oliveira and
Leite provide a theoretical formulation for the use of the green-
red palette based on RGB-colormetrics [14]. Baatartogtokh et
al. isolated the blue-red palette in an experiment to evaluate
whether the addition of colors affected users’ ability to answer
goal model questions [15]. They found that the coloration
feature (called EVO) significantly improved the speed of
subjects’ decision making, without affecting quality. This
state-of-the-art feature shows promise; however, the empirical
findings supporting it are limited by the small sample size
of the original study and may be compromised by hypothesis
guessing due to the prominence of the researchers at the study
site. Also, the results may not extend externally because of the
homogeneous characteristics of the sample. Thus, our aim is
to investigate the robustness of the original study findings
and to strengthen the body of evidence about EVO.

Contributions. In this paper, we contribute a pseudo-exact
dependent replication [16] of the experiment by Baatartog-
tokh et al. [15]. We change the experimental site and the
study population with the goal of exposing and understanding
sources of variability that influence the results [17]. We
improve on the original study by increasing the size of our
sample (n = 60), increasing statistical power to detect small-
or intermediate-sized EVO effects. Additionally, we collect
subjects’ color preferences and demographic information to
understand whether the EVO color palette is intuitive to
users. Finally, we conduct a meta-analysis of Baatartogtokh et
al. [15] and the replication study in order to obtain a more
precise and generalizable estimate of the effect of EVO.

Research Questions. We replicate the research questions of
Baatartogtokh et al. [15] (called the “Smith” experiment):
RQ1 To what extent are subjects able to learn EVO, and then

use EVO to answer goal modeling questions?
RQ2 How does EVO compare with the control in terms of

time and subjects’ perceptions?
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RQ3 How do subjects rate the study experience and instru-
ment?

We add two research questions to explore variations between
studies and evaluate the original color choice:
RQ4 To what extent do subjects associate blue and red with

good and bad outcomes, respectively?
RQ5 How do subjects compare across studies? What are the

sources of variability, if any, that influence the results?
We confirm the results of Baatartogtokh et al. [15]. Subjects

answered questions significantly faster with EVO than without,
without any evidence of impact on correctness. We found
no statistically significant differences in the impact of EVO
on completion speeds or answer correctness between the
original experiment and our replication; thus, we contribute
pooled, more precise, estimates of EVO’s impact on goal
modeling. In terms of color choice in EVO, we found that
most subjects associate green with good outcomes and red with
bad outcomes, while only a few associate blue with good. We
argue that the chosen EVO palette is not intuitive for users.
These results impact future RE research and the development
of goal modeling tools aimed at software practitioners.
Organization. In what follows, we describe our replication
design in Sect. III and results in Sect. IV. We explore implica-
tions in Sect. V and future directions in Sect. VII. Additionally,
we give a brief overview of goal modeling terminology in
Sect. II and discuss related literature in Sect. VI.

II. BACKGROUND

Goal Models. A goal model represents a scenario as a directed
graph, where the nodes are stakeholders’ ‘intentions’ and the
links represent the relationships between intentions. Intentions
are assigned to an ‘actor’ in the scenario, who is an entity
involved in the activity. Fig. 1 shows a goal model fragment
in Tropos [18], which was adapted from the original study
Bike model [19]. The model displays the City actor and
its intentions. Intentions consist of four types: goals, tasks,
soft goals, and resources. These intentions and their default
background color are shown in the legend in Fig. 1. For
example, goals are yellow ovals and tasks are green hexagons.
Note that the default color of each intention is not the construct
under investigation in this study; instead, the default color
representation is treated as the control.

Model links consist of two general types: decomposition
and contribution. Decomposition links decompose an intention
into sub-intentions. In an and decomposition all of the sub-
intentions need to be satisfied in order for the parent intention
to be satisfied. In Fig. 1, the City’s root goal is Have Bike
Lanes, which is and-decomposed: both Have Design Plans
and Have Build Plans must be satisfied in order for Have
Bike Lanes to be satisfied. Only one fulfilled sub-intention is
needed to satisfy the parent intention of an or link; thus, only
one of No Parking or Bike Lanes Curbside must be satisfied
to make Have Design Plans satisfied. By or decomposing
goals, stakeholders can evaluate scenarios and make trade-off
decisions. Contribution links indicate that a source intention
influences the destination intention of the link. Contribution

Legend:

Fig. 1: Fragment of Bike model & goal model legend.

links are denoted as ++, +, --, or -, where the number of
symbols indicates the strength of the influence. For example,
the - link towards Cost Justification in Fig. 1 will propagate
partial negative evidence, whereas the -- link to the same
node will propagate full negative evidence.
Intention Valuations. Goal models can be assigned evidence
pairs which represent the level of evidence for the fulfillment
of a given intention. Evidence pairs are represented by (s, d),
where s represents the level of evidence for the satisfaction
or fulfillment of an intention and d represents the level of
evidence against the satisfaction or fulfillment of an intention.
Each of s and d can be assigned one of three values: F denot-
ing full evidence, P denoting partial evidence, or ⊥ denoting
no evidence. These combinations of evidence pairs form the
five named values—[Fully] Satisfied (F,⊥), Partially Satisfied
(P,⊥), Partially Denied (⊥,P), [Fully] Denied (⊥,F), and
None (⊥,⊥)—as well as four conflicting values (F, F), (F,
P), (P, F), (P, P). These values can be assigned by the user in
the model. In Fig. 1, the user has assigned the task Temporary
Construction Plan the value Satisfied (F,⊥) because the actor
City has already completed the task. During analysis, the initial
valuations are propagated throughout the model. In this study,
we investigate how the use of color affects subjects’ ability to
review and interpret the evidence pair assignments of a model.
EVO. As introduced in Sect. I, EVO (Evaluation Visualization
Overlay) assigns colors to each of the evidence pairs used
for intention valuations [9]. The color blue means that an
intention is more satisfied, while red means that the intention
is more denied. Thus, as shown in Fig. 2, Satisfied is colored
blue, Partially Satisfied is colored light blue, Partially Denied
is colored light red, and Denied is colored red. None is
assigned grey. The purpose of assigning colors through EVO
is to make evaluating a goal model simpler. Thus, the base
colors of intentions are overlayed with colors that represent
their valuations. Intentions without assignments retain their
base colors. Fig. 3 shows the intentions from the model in
Fig. 1 that have assigned evidence pairs, where each intention
is sliced showing it with and without EVO. Two additional
EVO modes can be used to review a time-based simulation.
The Time mode merges all time points into one view, shown
as colored stripes over an intention in the order that they



Fig. 2: Legend of evidence pairs with EVO.

Fig. 3: Fig. 1 Intentions without (left) and with (right) EVO.

occur. The Percent mode also uses colored stripes, where each
stripe corresponds to the percentage of the simulation that the
intention is assign each evidence pair value.

III. METHODOLOGY

Since we replicate the work of Baatartogtokh et al. [15], we
do not repeat the original study design in this paper but give
a brief overview of it and relevant differences. This study is
in compliance with the ACM Publications Policy on Research
Involving Human Participants and Subjects and was approved
by the Research Ethics Board at the University of Toronto
(Protocol ID: 00045411) and the Institutional Review Board
at Smith College (Protocol ID: 20-026). Our supplemental
materials are available online1.
Study Rationale. First, we explain our study rationale and
trade-offs [20]. While a theoretic replication (see Sect. VI)
could have provided more insight into the use of the technique,
we argue that the risks introduced in Sect. I need to be
mitigated first. The original experiment was conducted at a
women’s liberal arts college with an undergraduate population
of 2,500 [21] that is known for its tight-knit community.
Subjects may have gained insight about the research through
prior presentations and posters at the college, leading to hy-
pothesis guessing. Additionally, students are instructed in goal
modeling at the undergraduate level. As such, it is important to
replicate the study at an independent co-educational institution
with a larger, potentially more heterogeneous, student body.
We thus chose to maintain the original study design and
replicate it in a different population. We were able to reuse
the study materials and deliver the same training [19] since
the exact materials could be used and we do not have the
possibility of instructor bias. There were some differences in
the study instrument, which we discuss later in this section.
Study Context. Our study was conducted in early 2024 at
the University of Toronto, St. George Campus. Subjects were
required to be proficient in English and not have a known
color vision deficiency (i.e., colorblindness). We updated the
inclusion criteria for our context, requiring that subjects be
computer science (CS) majors or specialists and have com-
pleted a second-semester CS course with training on program-
ming and data structures (i.e., CSC111H1 or CSC148H1),

1See https://doi.org/10.35482/csc.001.2025 for supplement.

TABLE I: Study protocol.

Trial Arms (Sequences)

Period EBk-XSm XSm-EBk ESm-XBk XBk-ESm

0 Consent, Inclusion Criteria, and Goal Modeling Training

1 Training: EVO
Bike EVO

Summer
Control

Training: EVO
Summer EVO

Bike
Control

2 Summer
Control

Training: EVO
Bike EVO

Bike
Control

Training: EVO
Summer EVO

3 Collect Demographic Information and Debrief

which is the same level of study required for the original
study at Smith College. We recruited subjects through the
CS undergraduate mailing list and targeted course specific
mailing lists for eligible classes. We also posted flyers in
the building where the software engineering (SE) research
lab is located (see supplement1 for recruitment materials).
Subjects completed the instrument in a meeting room in the SE
research lab, with one researcher available to answer questions.
The researcher sat facing away from the subject’s screen, to
reduce subject apprehension. All subjects who completed the
survey received a $25 CAD Amazon.ca gift card, which was
distributed via email in weekly waves.
Experimental Procedure. The protocol for the in-person
lab session is shown in Tbl. I. Subjects were automatically
randomly assigned to a trial arm (i.e., sequence). We first
verified the subjects’ study eligibility, prior knowledge, and
color preferences before having the subjects complete training
in goal modeling. In Periods 1 and 2, each subject answered
the twelve questions listed in Tbl. II relating to either the
“Summer” or “Bike” models (see [19] for models). In this
crossover design, we varied both the experimental objects
(i.e., Bike or Summer model) and whether EVO had been
applied to the model or not (i.e., control). Immediately prior
to using the EVO treatment, subjects were trained in EVO. For
example, EBk-XSm (see Tbl. I) was trained in EVO and used
EVO to answer the Bike questions in Period 1, then answered
the Summer questions in Period 2 without access to EVO.
XSm-EBk swapped the order of EBk-XSm but used the same
experimental objects for each treatment. ESm-XBk learned
EVO in Period 1 but answered Summer questions with EVO,
while XBk-ESm completed the same in Period 2. All trial
arms concluded the session with a short debriefing.
Differences in Study Instrument. We made the improve-
ments recommended by Baatartogtokh et al. [15]. We allowed
subjects to select black or dark purple as the color option to
represent full conflict (F, F) and updated Q4 and Q8 in Tbl. II.
We also asked subjects to briefly describe the context in which
they became familiar with any Goal Modeling Languages;
however, these responses were limited and not meaningful.
This holds for the context of the University of Toronto, as
goal modeling is not introduced at the undergraduate level. We
collected additional demographic information from subjects,
including program and year of study, gender, international
student status, country of primary education, and their self
described cultural identity. This additional information allowed



TABLE II: Summer and Bike questions used in the “Smith” and replication experiment.

Page Num Summer Model Bike Model
P1 Q1 What is the initial satisfaction value of “Pass Tryouts”? What is the initial satisfaction value of “Prevent Dooring Incident”?
P1 Q2 What is the initial satisfaction value of “Exercise”? What is the initial satisfaction value of “Bike Lane Usage”?
P1 Q3 Is the initial state of the model more satisfied, denied, or conflicted? Is the initial state of the model more satisfied, denied, or conflicted?
P2 Q4 (“Smith” Experiment) For each of the elements listed below, how

many times over the simulation does the element become Fully
Satisfied?

(“Smith” Experiment) For each of the elements listed below, how
many times over the simulation does the element become Fully
Satisfied?

(Replication Experiment) For each of the elements listed below, how
many time point(s) over the simulation is the element Fully Satisfied?

(Replication Experiment) For each of the elements listed below, how
many time point(s) over the simulation is the element Fully Satisfied?

(a) Have Summer Activity, (b) Pass Tryouts, (c) Exercise (a) Bike Lane Curbside, (b) Temporary Construction Plan, (c) Public
Support

P2 Q5 How does “Join Soccer Team” generally evolve over the simulation? How does “Public Support” generally evolve over the simulation?
P2 Q6 For each of the following satisfaction values, at which time point in

the simulation do the most number of elements have the value. Note:
In the event of a tie, choose the later time point (higher number).
(a) Fully Satisfied, (b) Fully Denied, (c) Any Conflicted Value

For each of the following satisfaction values, at which time point in
the simulation do the most number of elements have the value. Note:
In the event of a tie, choose the later time point (higher number).
(a) Fully Satisfied, (b) Fully Denied, (c) Any Conflicted Value

P2 Q7 Which intentions are Partially Denied at Time Point 1? Which intentions are Partially Satisfied at Time Point 1?
P3 Q8 Which intention would you choose to satisfy to make “Exercise”

Fully Satisfied?
(“Smith” Experiment) Which intention would you choose to satisfy
to make “Prevent Unloading in Bike Lane” Fully Satisfied?
(Replication Experiment) Which intention would you choose to
satisfy to make “Access to Parking” Fully Satisfied?

P4 Q9 On the previous page, we ask the question: [Q8]. You answered [Q8
choice]. Please explain your answer to this question.

On the previous page, we ask the question: [Q8]. You answered [Q8
choice]. Please explain your answer to this question.

P4 Q10 How would assigning “Drive to and Play Soccer” the value Fully
Satisfied influence the model?

How would assigning “Parking Curbside” and “Temporary Con-
struction Plan” the value Fully Satisfied influence the model?

P5 Q11 Click here for a PDF to compare three different scenarios of the
Summer model. Should you choose to join a book club, community
garden, or soccer team?

Click here for a PDF to compare different scenarios of the Bike
Lanes model. How should you construct the bike lanes?

P6 Q12 On the previous page, we asked you to compare three different
scenarios of the Summer model and answer the question: [Q11]. You
answered [Q11 choice]. Please explain your answer to the previous
question.

On the previous page, we asked you to compare different scenarios
of the Bike Lanes model and answer the question: [Q11]. You
answered [Q11 choice]. Please explain your answer to the previous
question.

us to monitor the diversity of our study population relative to
that in Baatartogtokh et al. [15] (e.g., with respect to gender)
and to assess whether randomization appropriately balanced
study subjects between the four trial arms; see Sect. IV-A
for details. Finally, we asked subjects about colors that they
associate with good and bad outcomes (see RQ4 in Sect. IV-E).

Data Processing and Outcomes. We used two primary
outcomes for assessing the use of EVO (collected in Periods
1 and 2 of Tbl. I): (a) the speed (in seconds) that it took
subjects to complete the goal modeling questions (higher is
worse) and (b) the number of correct responses given to those
questions (higher is better). The time calculation consisted of
adding the times for pages P1, P2, P3, and P5; see left-most
column of Tbl. II. To calculate the score, we first performed
qualitative coding on questions Q9, Q10, and Q12 (see Tbl. II)
using the agreed rubric (see supplement1). Questions Q9 and
Q12 validated the responses to Q8 and Q11, respectively, and
were excluded from the score calculation. Two researchers
independently coded each of the responses. We achieved an
inter-rater reliability κ = 0.84 for the Summer questions and
κ = 0.87 for the Bike questions (Cohen’s kappa coefficient). A
third researcher joined the discussion to resolve disagreements.
Next, we added together the number of correct responses to the
remaining questions. Questions Q4 and Q6 were each scored
out of 3 points, one point for each subquestion. Subjects’ final
scores were thus adjudicated out of 14 possible points.

Additional secondary outcomes included the subjects’ quan-
titative assessment of the study instrument and materials.

Subjects completed four optional material evaluations: one for
the initial training (completed at the end of Period 0, Tbl. I),
one each for the Summer and Bike models (at the end of the
relevant study periods), and one for the EVO training materials
(at the end of the period in which the training occurred). For
example, EBk-XSm evaluated the initial training materials at
the end of Period 0, the EVO training materials immediately
after the training and the Bike model materials at the end of
Period 1, and the Summer model materials at the end of Period
2. Each set of materials was evaluated based on the difficulty of
(a) understanding the scenario description, (b) understanding
the goal model, and (c) answering the goal modeling questions.
Ratings went from 0 (no difficulty) to 10 (complete difficulty).

Statistical Analysis. The target sample size was n = 56
subjects (with 14 individuals per trial arm), following the rec-
ommendations made in Baatartogtokh et al. [15]. Subject de-
mographics were summarized using medians and interquartile
ranges (for numeric characteristics) or frequency distributions
(for categorical characteristics), and their balance across the
trial arms were assessed using Kruskal-Wallis [KW] tests or
Fisher’s exact [FE] tests, respectively. The primary outcomes
were evaluated using mixed-effects models with adjustment
for the study period in which the measurement was taken,
the experimental object, and any other characteristics found to
be imbalanced between the four trial arms (see supplement1

for full model specifications). The subjects’ evaluations of the
experimental materials were also assessed using linear mixed-
effects models, with additional adjustment for the sequencing



of the experimental objects. We considered the study period
and the experimental object to be potential modifiers of the
effect of EVO; we tested for this by including interactions
between each of these factors and the intervention and then
evaluating these interactions using likelihood ratio tests [LRT].
Other secondary outcomes were analyzed descriptively.

We used Fisher’s exact tests to examine differences in
subject characteristics between our study and that of Baatar-
togtokh et al. [15]. We then reanalyzed the primary outcome
data from Baatartogtokh et al. [15] using the mixed-effects
models described above and combined both sets of study
results using a one-step fixed-effects meta-analysis of the
individual subject data (see supplement1 for details) [22], [23].
We tested for the presence of effect heterogeneity by including
interactions between EVO and the study site. In the absence
of significant heterogeneity, we reported pooled estimates and
95% confidence intervals for the effects of EVO.

All statistical tests are two-sided and all p-values and con-
fidence intervals are presented at their nominal level, without
adjustment for multiple testing. We take α = 0.05 as an
indication of statistical significance throughout.

IV. RESULTS

In this section, we first give an overview of our subject
characteristics and then answer each of our research questions.

A. Subject Characteristics
Sixty-one students at the University of Toronto partici-

pated in the experimental study, with 60 of these individuals
included in the primary analysis and one excluded due to
non-response (see supplement1 for details). Thirty-three of
the subjects (55.0%) self-identified as male and 21 (35.0%)
were international students. Subjects most commonly reported
Canada (30 subjects; 50% of the sample), China (8; 13.3%),
the United States (4; 6.7%), and India (4; 6.7%) as the location
for the majority of their primary education. Most subjects
(70%) indicated complete familiarity with English but had
limited previous exposure to requirements engineering or Goal
Modeling Languages: 58 (96.7%) indicated no familiarity with
any of iStar, Tropos, or GRL.

These attributes were all balanced between the four trial
arms (see supplement1 for a table of characteristics and p-
values for balance). There were likewise no significant dif-
ferences in the speed at which each of the groups completed
the goal modeling (KW, χ2

3 = 2.44, p = 0.48) or EVO (KW,
χ2
3 = 1.58, p = 0.66) training modules nor in the number of

questions that they answered correctly on the corresponding
comprehension checks (KW, χ2

3 = 0.54, p = 0.91 for goal
modeling; χ2

3 = 3.59, p = 0.31 for EVO training). A vast
majority of the subjects (57; 95%) received a perfect score
on the color vision test and all 60 individuals passed (i.e.,
received a score of 5 or greater out of 7), as required per the
study’s inclusion criteria.

We find no significant variation in the baseline charac-
teristics of the four trial arms, indicating that the groups
are broadly comparable and that no adjustment for baseline
characteristics is necessary.

B. RQ1: Learning and Applying EVO to Goal Modeling Tasks
Given the baseline comparability of the four trial arms, we

combine data from all 60 subjects when evaluating whether
they could successfully learn and apply EVO from the pro-
vided training materials. The median time to review these
materials was 3.32 minutes (interquartile range [IQR], 3.27
to 3.61 minutes), with a subsequent 1.35 minutes (IQR,
1.09 to 1.77 minutes) spent completing the six EVO training
questions. All but one subject passed the EVO training module
(defined as answering five or more questions correctly), and
54 subjects (90.0%) received a perfect score. All 60 subjects
were included in subsequent analyses. Further, as we discuss
in RQ2, all subjects achieved a passing score when using EVO
to answer questions about the Bike and Summer models.

Subjects generally found the EVO training materials to
be clear. When asked to rate the difficulty they encountered
understanding the scenario, understanding the model, and
answering the training questions, subjects’ median responses
were 1.00, 2.00, and 1.00, respectively, on a scale of 0 (no
difficulty) to 10 (complete difficulty); forty-four subjects of
the 57 who provided difficulty ratings (77.2%) rated all three
components at 4.00 or below on the scale. See Sect. IV-D
for a discussion of the perceived difficulty of the remaining
study materials. As part of the training, subjects were asked to
document questions they had about EVO. Six subjects (10%)
responded. Subjects asked meta questions about the chosen
colors and their relationship with element types and text colors.
Two subjects asked questions about distinguishing between the
different EVO modes (i.e., Percent/Time), though subsequent
materials labeled which model was represented.

RQ1: In the initial training, almost all subjects were able to
learn and use EVO to answer questions. Most subjects finished
the training in under six minutes and rated it as low difficulty.

C. RQ2: Comparison of Performance with EVO vs. Control
Here we consider the two primary outcomes for the as-

sessment of EVO: the time (in seconds) that it took subjects
to complete the goal-modeling questions (listed in Tbl. II),
capturing subjects’ ability to make decisions quickly, and
the number of correct responses provided to those questions,
capturing their overall comprehension of the model.
Completion Time. Subjects completed the goal-modeling
questions in as little as 92.56 seconds or as much as 1339.32
seconds, with the median completion time across all exper-
imental objects, experimental conditions, and periods being
523.59 seconds (or 8.73 minutes) (see Fig. 4). Completion
times were significantly faster during Period 2 than during
Period 1, indicating the presence of a learning effect (mean
difference, -127.24 seconds; 95% confidence interval [CI], -
173.78 to -80.70; p < 0.001; Tbl. III). However, the magnitude
of this learning effect did not significantly differ between the
Bike and Summer models (LRT, χ2

2 = 0.78, p = 0.68) or
between the EVO and control conditions (LRT, χ2

2 = 2.91,
p = 0.23), indicating that there were no significant carryover
effects due to either experimental object or experimental
condition sequencing (see supplement1 for details).



Fig. 4: Distribution of completion times for the experimental
goal-modeling exercises, shown separately within each ex-
perimental object (i.e., Bike or Summer model), period, and
experimental condition (i.e., EVO or control).

The median completion time under the EVO experimental
condition was 419.60 seconds (6.99 minutes) and under the
control condition was 655.97 seconds (10.93 minutes), almost
a four minute difference (or 36% reduction) in median comple-
tion time. After controlling for both the study period and the
experimental object encountered, we find that subjects’ use of
EVO was associated with significantly faster completion times:
subjects answered questions 227.07 seconds (3.78 minutes)
faster, on average, with EVO than without EVO (95% CI, -
273.61 to -180.53; p < 0.001; see Tbl. III). There was weak
but suggestive evidence of task inequivalence between the Bike
and Summer models, with the Bike model questions taking
subjects an average of 42.61 seconds longer than the Summer
model questions (95% CI, -3.93 to 89.15; p = 0.07). The time
benefits of EVO did not, however, significantly differ between
these two experimental objects (LRT, χ2

2 = 2.08, p = 0.35).

Number of Correct Responses. Although subjects tended
to complete goal-modeling questions faster when using EVO,
there was no meaningful change in their understanding of the
model, as measured by the number of correct responses. Fig. 5
displays the complete distribution of subject scores across all
experimental objects, periods, and experimental conditions.
The median number of correct responses was 13 out of 14
under both experimental conditions (IQR for both EVO and
control, 12 to 14). Taking scores of 10 and above to indicate
satisfactory performance on the goal-modeling exercise (i.e.,
≥ 70% of model questions correct), we see that all 60 subjects
achieved satisfactory performances while using EVO; 57 out of
the 60 subjects (95%) also achieved satisfactory performances
under the control condition. After accounting for both the
study period and the experimental object, we estimate that
the odds of correctly answering a goal-modeling question are
the same for EVO as for control (adjusted odds ratio [OR],
1.00; 95% CI, 0.71 to 1.42; p = 0.98; see Tbl. III).

There were no statistically significant learning effects across
the two study periods (adjusted OR, 0.89; 95% CI, 0.63 to
1.25; p = 0.49) nor significant differences in the effect of EVO
between Periods 1 and 2, i.e., carryover effects (LRT, χ2

2 =
0.09, p = 0.96). There were also no significant differences in

Fig. 5: Distribution of correct responses to the experimental
goal-modeling questions, shown separately within each ex-
perimental object (i.e., Bike or Summer model), period, and
experimental condition (i.e., EVO or control). Responses are
scored out of 14 points; the dashed line indicates a satisfactory
performance of 10 or more correct responses.

the odds of a correct response between the Bike and Summer
models (adjusted OR, 1.38; 95% CI, 0.98 to 1.96; p = 0.07).
Subjects’ Perspectives. In our qualitative analysis, 58 sub-
jects (96%) said that they preferred the color view over the
non-color view. 40 subjects mentioned that EVO made the
model easier to read or understand, 15 mentioned that it was
faster/quicker for answering questions, and 13 mentioned it
was better for seeing the model at a glance. One subject
preferred the non-color view, finding the colors distracting,
while another did not have a view preference, stating that EVO
was good for a quick glance but was overstimulating at times.

RQ2: We find significant evidence that using EVO is associ-
ated with faster completion times, but found no evidence of any
impacts on correctness. A supermajority of subjects preferred
the EVO over the control for its speed and ease of use.

D. RQ3: Study Experience and Subjects’ Perceptions

Subjects assessed four facets of the study materials: the
initial goal modeling training materials, the EVO training
materials, and the two experimental objects (i.e., the Bike
and Summer models). Results regarding the EVO training
materials were summarized previously in Sect. IV-B; the
remainder of the materials are discussed below.
Goal Modeling Training Materials. All 60 subjects pro-
vided quantitative assessments of the initial training sequence.
However, two subjects reported having misinterpreted and
reversed the difficulty scale when providing ratings of these
and all other materials. We removed these individuals from the
analysis, so that we had complete material assessments from
58 subjects (96.7%) in Period 0. A sensitivity analysis that
includes the two subjects with errors is available online1.

Subjects found the goal model in the initial training se-
quence moderately challenging to understand, with a median
difficulty rating of 5.0 out of 10 (IQR, 2.25 to 7.00). The goal
modeling scenario and corresponding goal modeling questions
were somewhat more accessible, with median difficulty ratings
of 2.0 (IQR, 1.0 to 4.0) and 3.0 (IQR, 2.0 to 6.0), respectively.



TABLE III: Mixed-effects analysis of the experimental goal-modeling exercise.

Time to Complete Questions Odds of a Correct Response

Mean Difference (in sec.) L 2.5% U 97.5% P-Valuea Odds Ratio L 2.5% U 97.5% P-Valuea

Treatment < 0.001 0.98
Control [Reference Level] [Reference Level]
EVO -227.07 -273.61 -180.53 1.00 0.71 1.42

Period < 0.001 0.49
Period 1 [Reference Level] [Reference Level]
Period 2 -127.24 -173.78 -80.70 0.89 0.63 1.25

Experimental Object 0.07 0.07
Summer [Reference Level] [Reference Level]
Bike 42.61 -3.93 89.15 1.38 0.98 1.96

L 2.5% and U 97.5% refer to the lower and upper bounds, respectively, of the 95% Wald confidence interval for the corresponding effect estimate.
aP-values calculated using Wald tests on the slopes from the (generalized) linear mixed-effects models.

TABLE IV: Perceived difficulty of the study instrument and goal-modeling tasks, with and without the use of EVO.

Bike Modela Summer Modela Effect Size of EVOb

EVO Control EVO Control Adjusted Diff. in
Mean Ratings (95% CI) P-Value

(a) Understanding the Scenario Description 2.00
(1.00 to 3.25)

3.00
(1.00 to 5.00)

1.00
(1.00 to 2.00)

2.00
(0.00 to 4.00)

-0.50
(-0.94, -0.05) 0.03

(b) Understanding the Model 2.00
(0.75 to 4.00)

5.00
(3.00 to 6.00)

2.00
(1.00 to 5.00)

3.00
(1.00 to 5.00)

-1.01
(-1.61, -0.41) 0.002

(c) Goal-Modeling Questions 3.00
(1.00 to 5.00)

5.00
(2.00 to 7.00)

3.00
(1.00 to 5.00)

3.00
(2.00 to 5.00)

-1.23
(-1.92, -0.55) 0.001

aSubjects rated difficulty on a scale from 0 (no difficulty) to 10 (complete difficulty). Summaries refer to the subjects’ ratings of the Bike study materials
[resp. Summer study materials] and are reported as median (IQR). They are calculated using all available information taken over both study periods, i.e.,
combining Bike [resp. Summer] ratings across individuals who saw the Bike model first and individuals who saw the Summer model first. bEffect sizes and
p-values were calculated using a mixed-effects model that adjusted for the experimental object (i.e., Bike or Summer model), the study period, and whether
the subject saw the Bike or Summer model first. Confidence intervals are Wald confidence intervals and p-values are from Wald tests of the model slopes.

This is in line with our observation in Sect. IV-A that a
supermajority of subjects in our replication study had no prior
familiarity with goal modeling, such that the initial training
sequence represented their first encounter with the field.

Experimental Materials. One subject opted not to complete
the Period 2 materials assessment, so that we had complete
and error-free ratings from 58 subjects (96.7%) in Period 1
and 57 subjects (95%) in Period 2.

Subjects generally found the experimental tasks to be less
difficult than the initial training sequence: across each of the
three dimensions subjects were asked to rate (understanding
the scenario description, understanding the corresponding goal
model, and answering the goal modeling questions), the me-
dian difficulty rating was 3.0 out of 10 in Period 1 (IQR, 1.0 to
5.0) and 3.0 out of 10 in Period 2 (IQR, 1.0 to 6.0); there were
no significant differences in mean difficulty ratings across the
two periods (mean difference in ratings, 0.22 points; 95% CI,
-0.10 to 0.54; p = 0.18; see supplement1).

However, the Bike model did pose a greater challenge to
subjects than the Summer model. Under the default coloring
scheme, subjects found the Bike scenario and goal model to
be more difficult to understand than those for the Summer
experimental object and the Bike model questions to be more
difficult to answer than the Summer questions (see Tbl. IV).
The difficulty of the Bike model also carried over into how the
subjects perceived the other study materials, with those who
saw the Bike model in Period 1 finding the study materials

to be significantly more challenging than those who saw the
Summer model in Period 1 (mean difference in difficulty
rating, 1.26 points out of 10; 95% CI, 0.20 to 2.32; p = 0.02).

Building on the qualitative results from Sect. IV-C, we find
that the use of EVO meaningfully impacted subjects’ ratings
of the experimental materials and their difficulty (see Tbl. IV).
Subjects found the scenario descriptions and models to be
significantly easier to understand when encountered with EVO:
among subjects who faced the same goal model in the same
study period, those who saw the model with EVO rated the
scenario 0.50 points less difficult to understand (95% CI, -
0.94 to -0.05; p = 0.03) and the goal model 1.01 points less
difficult to understand (95% CI, -1.61 to -0.41; p = 0.001), on
average, than did those who saw the model with the default
coloring scheme. They also rated the corresponding goal-
modeling questions as significantly easier to answer (mean
difference in ratings, 1.23 point decrease in difficulty; 95%
CI, -1.92 to -0.55; p < 0.001).

RQ3: Subjects generally found the study instruments and
experience to be moderately, though not overly, challenging,
with the initial training materials rated as the most difficult
to understand. Subjects found the Bike model materials to
be significantly more challenging than the Summer model
materials, with carryover effects on their perception of the
remaining study instruments. After controlling for these dif-
ferences and carryover effects, we found that subjects rated
the experimental materials significantly easier to understand



and use effectively when they saw the materials with EVO.

E. RQ4: Color Associations and Preferences

Prior to beginning the experiment, subjects were asked to
list the color(s) that they associated with positive outcomes
(i.e., good things happening) and with negative outcomes
(i.e., bad things happening). Each of the following colors was
identified by at least one subject as having positive associa-
tions: green (identified by 93.3% of the sample), yellow/gold
(11.7%), blue (3.3%), pink (3.3%), red (3.3%), orange (1.7%),
purple (1.7%), and white (1.7%). Responses for colors asso-
ciated with negative outcomes were less varied. 93.3% of the
subjects identified red as a negative color, 16.7% identified
black/gray, and 1.7% identified each of yellow, orange, blue,
and green. Notably, every individual who named red as a
negative color also named green as a positive color; only four
individuals (6.7%) did not self-report a green ⇐⇒ positive
/ red ⇐⇒ negative visual scale. Two of these subjects com-
pleted their primary education in China, one in Romania, and
one in Canada. The subjects identified culturally as Chinese,
Romanian, and Westernized Asian, respectively.

In the color-blind friendly palette used by EVO, blue
coloring indicates fulfilled intentions (what one might consider
to be positive outcomes), and red coloring indicates denied
intentions (what one might consider to be negative outcomes).
This kind of visual alignment (in which blue is positive and red
is negative) was voluntarily mentioned by only two subjects
(3.3%), both of whom also listed green as a positive color.
See Sect. V-C for further discussion.

RQ4: We found most subjects associate red with bad out-
comes. Green had the most prevalent association with good
outcomes, with only a couple of subjects selecting blue.

F. RQ5: Comparison and Meta-Analysis of the “Smith” Ex-
periment and Replication Experiment

The present study was undertaken in order to replicate the
work of the “Smith” Experiment [15] in a different educational
context and subject population, with the goal of exploring the
robustness of the original study’s findings. Tbl. V provides a
formal comparison of the two study populations, as well as the
conclusions reached by each of the two studies. As expected,
subjects in the replication study had less a priori familiarity
with requirements engineering and with goal modeling than
their counterparts at Smith—University of Toronto students
were 91.2% less likely than Smith students to report familiarity
with any of iStar, Tropos, or GRL (3.3% vs. 37.5%; FE,
p < 0.001). Subjects at the University of Toronto were also
significantly less likely to report complete familiarity with
English (FE, p = 0.04). Other key demographic differences
include the high proportion of male subjects in the replication
study (at 55.0% of the sample), while Smith College only
admits individuals who identify as women. The “Smith” ex-
periment [15] did not collect information on subjects’ location
of primary education or color preferences.

Despite the heterogeneity of the two study populations, we
find no statistically significant differences in the effect of EVO

(a) Time to complete experimental goal modeling questions.

(b) Odds of a correct response to a question.

Fig. 6: Forest plots of two studies investigating the effect of
EVO on (a) speed and (b) comprehension of an experimental
goal modeling task. The size of each blue square represents the
relative weight of each study and the black diamond represents
the combined effect estimate. The gray vertical line represents
no effect.

on the speed with which subjects completed the goal-modeling
questions (LRT, χ2

1 = 1.72, p = 0.19) or on the odds that
they answered the goal-modeling questions correctly (LRT,
χ2
1 = 0.35, p = 0.56) (see full table online1). The pooled

effect sizes are shown in Fig. 6. After accounting for both
period (i.e., learning) effects and the experimental object, we
again find that individuals using EVO answered the goal-
modeling questions significantly faster than those using the
default color scheme (mean difference, -248.42 seconds; 95%
CI, -282.54 to -214.30; p < 0.001), without any significant
effect on the likelihood that they answered those questions
correctly (adjusted OR, 1.07; 95% CI, 0.82 to 1.40; p = 0.62).
This absolute reduction in mean completion time translated to
an estimated 30.0% to 41.4% reduction in the time spent on the
goal-modeling task, depending on the study, study period, and
experimental object subjects encountered (see supplement1).

RQ5: Despite significant differences in the study populations
at the University of Toronto and Smith College, we found
no significant differences in the benefits provided by EVO.
Combining data from the two studies produced more precise
estimates of EVO’s impact on speed and comprehension; these
estimates also generalize to a more diverse student population.

V. DISCUSSION

A. Study Training and Debriefing

During the training modules and debriefing, subjects asked
questions and made recommendations. We discussed the EVO



TABLE V: Comparison of the two studies included in the meta-analysis.

(a) Study Population and Characteristics

“Smith” Experiment [15] Replication Experiment P-Valuea

Country United States Canada

Institutional Description Small women’s private
liberal arts college

Large coeducational
public research university

Sample Size 32 60
Subject Characteristics

Complete Familiarity with Englishb 29 (90.6%) 42 (70%) 0.04
Some Familiarity with REc 17 (53.1%) 22 (36.7%) 0.18
Some Familiarity with iStar, 12 (37.5%) 2 (3.3%) < 0.001

Tropos, or GRLd

Identify as Male —e 33 (55.0%) —

aP-values calculated using Fisher’s exact
test.
bSubjects rated familiarity on a scale
from 0 (no familiarity) to 10 (complete
familiarity). Reported proportions are the
percent of subjects who answered 10.
cReported proportions are the percent of
subjects who gave a score greater than 0.
dReported proportions are the percent of
subjects who gave a score greater than 0
for at least one of the listed languages.
eInformation not collected by
Baatartogtokh et al. [15].

(b) Results

“Smith” Experiment [15] Replication Experiment Comparison

RQ1: To what extent are subjects able to learn and apply EVO?
100% (32/32) passed EVO training 98.3% (59/60) passed EVO training Similar result
78% (25/32) achieved a perfect score 90% (54/60) achieved a perfect score

RQ2: How does EVO compare to control in terms of:
Completion time? Significantly faster completion of bike

(p = 0.012) and summer (p = 0.002)
models

Significantly faster completion, holding model and
period constant (time benefit: 3.78 min.;
p < 0.001)

Similar result; replica-
tion also estimates mag-
nitude of gain

Correct responses? Correct response rate not significantly
different for bike (p = 0.50) or summer
(p = 0.06) model

Odds of correct response not significantly different,
holding model and period constant (OR: 1.00;
p = 0.98)

Similar result; replica-
tion also estimates mag-
nitude of difference

Subject preferences? 100% (32/32) prefer EVO 96.7% (58/60) prefer EVO Similar result
RQ3: How do subjects rate the study experience and instrument?

Qualitative analysis only Significantly less difficult when encountered with
EVO (p < 0.001)

Novel replication result

RQ4: To what extent do subjects associate blue (resp. red) with good (resp. bad) outcomes?
— 3.3% (2/60) subjects self-reported this visual scale Novel replication result

training specific questions in Sect. IV-B.
After the goal modeling training, 37 subjects (61%) asked

a question. Most subjects asked for further clarification on the
contribution links and how valuations were assigned to the
model. Specifically, twelve subjects asked about the difference
between symmetric and asymmetric contribution types, while
six asked about the strength of the influence (i.e., + vs. ++)
in contributions. One asked what it meant to invert evidence
and another asked for contribution link specific examples.
Seven subjects were confused about how evidence pairs or
links are assigned to the model, with one asking if they are
allowed to make subjective decisions. One questioned the
choice of valuations used in the model. Three subjects asked
what it means for there to be a conflicting evidence pair in
the model. Seven subjects also asked about how valuations are
propagated throughout the model. Another subject asked how
an individual is able to make decisions with evidence pairs if
they are able to prioritize one goal over the other.

During debriefing, 52 subjects (86% response rate) left
1-5 substantive comments for “the developers of the goal
modeling language (and tool)”. Five subjects left comments
about improving the study materials in some way (e.g., figure
size, video captioning). In Tbl. VI, we list common recom-
mendations, i.e., recommendations that occurred three or more
times in the dataset. As mentioned above, almost all subjects
preferred the color view, yet ten (16%) recommended changing

the actual colors used. Twelve (20%) recommended changes
to the visualization of the Precent and Time modes.

Although anecdotal, we observe from this data that subjects
have trouble understanding contribution links; but, we cannot
separate between whether the problem lies in the difficulty
of understanding the foundational language or inadequacies in
the training provided in this study. Future replication studies of
EVO should improve the training materials and videos to better
explain contribution links. We also recommend investigating
improvements to the underlying notation.

B. Recommendations for Tool Developers

Given the recommendations in Tbl. VI, especially those also
present in the “Smith” Experiment, we recommend that tool
developers investigate their impact. For example, adding ticks
to the Percent/Time mode is a straight forward change; yet, it
is uncertain whether it would improve readability or make the
model cluttered. Subjects proposed improving the visualization
of links, which could be addressed using color as suggested,
by varying line thickness or patterns (i.e., dashed/solid lines) to
indicate contribution strength, or with different labels for link
types. Finally, subjects recommended adding goal prioritiza-
tion, highlighting, and model slicing. Given the recent work on
presence conditions in goal models [24], model slicing appears
to be feasible and should be explored to allow users to focus
in on an individual actor or on a set of links in the model.



TABLE VI: Common recommendations for improvement.

EVO Improvements
- Change the color palette (not intuitive). (6)
- Change the conflict colors only. (4)
- Add numbers to Percent/Time mode. * (7)
- Add ticks to Percent/Time mode. (5)

Goal Modeling Improvements
- Add goal prioritization, highlighting, or model slicing. (7)
- Improve visualization of links (maybe with color). (5)
- Make contribution links type difference more intuitive. (5)
- Change the shape or default color of intentions. * (5)
- Make model text more readable. (5)

Bracketed numbers indicate counts of occurrence.
‘*’ indicates recommendations not present in Baatartogtokh et al. [15].

At a more foundational level, subjects suggested modifying
the shape or default color of intentions. Intention types are
represented using two encodings: shape as the primary visual
variable and color as the secondary variable. In contrast,
intention valuations are represented solely as text, unless EVO
is enabled, upon which color becomes the primary variable.
This may cause confusion with the secondary variable for
type, as there is an overlap in the meaning of an intention’s
color, which may reduce the the cognitive effectiveness of goal
modeling. We recommend changing the intention type colors
to further differentiate between intention type and valuation
so that encodings do not overlap with each other. While prior
research advises using color as a secondary encoding [25],
EVO’s reliance on it as a primary variable introduces tradeoffs
that require further investigation.

C. Blue vs. Green

In RQ2 (see Sect. IV-C), we found that all but two sub-
jects preferred EVO to the control; yet, in Sect. V-A, ten
subjects (16%) recommended changing the colors in EVO.
As introduced in Sect. I, most goal modeling tools use green
to denote good outcomes. In RQ4 (Sect. IV-E), we found that
most subjects in our study associate green, and not blue, with
good outcomes. While we may suspect that these preferences
may differ in populations with high prevalence of green-red
color-blindness [26], the default colors of EVO need to be
revisited. The blue-red palette is more visible for color vision
deficient users but less intuitive for the rest of the population.

D. Recommendations for Researchers

The replication package created by Baatartogtokh et al. [19]
was thorough but incomplete. The repository did not have
a data-dictionary for the final data files or rubric for the
qualitative analysis, so we created both. The statistical analysis
spanned multiple python and R files which made it confusing
to understand and update. We recommend minimizing the
complexity of data aggregation procedures.

As already mentioned in Sect. V-A, subjects had significant
problems understanding the contribution link types. While this
was mentioned in the original experiment [15], it seemed
more prominent in our replication. In hindsight, we should
have updated the training module that discussed contribution
links; however, explaining the syntax and semantics of twelve

different contribution types in Tropos seems to be a possible
area of future research. We recommend that future experiments
similar to ours use only the four symmetric contribution types.

E. Implications for Practitioners

This study is part of a larger effort to improve the appli-
cability and adoption of goal modeling [4] and is one part of
the “improve and measure” cycle. Our replication allows for a
higher level of confidence in the benefits of EVO for the goal
modeling community, including tool developers. Our findings
reveal the need to balance intuitiveness and inclusiveness in
choosing colors for highlighting elements in goal models.

Thus far, our evaluation of EVO is limited to undergraduate
students. While this is not ideal, we have limited access to
industrial collaborators and welcome the future involvement
of practitioners. Yet, by studying student outcomes, we can
improve goal modeling tools for future industrial deployment.
Students represent the next generation of industrial practi-
tioners, and by training students in goal modeling, we can
have future industrial impact. In particular, we believe that
EVO’s ability to reduce the cognitive load of using and making
decisions with goal models enhances learning, which in turn
makes the industrial adoption of goal modeling more realistic
in the future.

F. Threats to validity

Conclusion Validity. To reduce researcher bias, separate au-
thors conducted the in-person session, data preparation, and
statistical analysis. The lab environment and handouts were
kept consistent to minimize variation in subject experience.
We found no significant differences in trial arms based on
measured subject attributes and training performance (see
Sect. IV-A for details); however, there may be other unmea-
sured factors or sources of heterogeneity in subjects’ comfort
with goal modeling. See Sect. III for our detailed discussion
of statistical analysis that may affect conclusion validity.
Internal Validity. We mitigated fatigue effects by allotting
untimed break points for subjects. As in the original study,
the study design carries the risk of carryover and learning-
by-practice effects. Additionally, there is the instrumentation
effect as the Bike model was detected to be harder than the
Summer model. We mitigated these threats by controlling for
these differences in our statistical analysis.
Construct Validity. We discuss potential threats from the
dependence between our replication and the original study.
Both studies used the same method of measuring subjects’
perceptions of EVO, so there is a threat of mono-method bias.
A future evaluation using different methods would help ensure
that the results of this replication are not due to similar biases
from the original. There may be instrumentation bias, as we
used the same training materials and questions as the original
study and so potentially replicated any limitations or biases.
However, we mitigated this threat by making the changes listed
in Sect. III. Finally, there is the risk of hypothesis guessing
and evaluation apprehension as our subjects were novices.



External Validity. The experimental setting is not reflective of
how stakeholders would use goal modeling and EVO in reality,
as the models and scenarios were simple and not personalized
due to constraints on time. As our subjects are undergraduate
students with no prior experience in RE and goal modeling,
our results do not reflect how experts would use EVO.

VI. RELATED WORK

Color and Reasoning in Goal Modeling. The green-red
color scheme was first used in goal modeling to highlight the
valuations of URN models in the jUCMNav tool [6], [7]. This
same color scheme was used for iStar evaluation labels in
OpenOME [5]. In the context of quantitative non-functional
requirements, Oliveira and Leite [14] used the green-red color
scheme and colormetrics to calculate an exact hue based on
the propagated valuations in the model, and colored links to
indicate the polarity of propagation. Outside of analysis, color
has also been used to identify aspects of a goal model, such
as root and leaf nodes for iStar models in OpenOME [5].
In piStar, users can assign each intention any color of their
choice [27]. Sartoli et al. mapped colors to the model elements,
where purposes are purple and obligations are green [11].
Perera et al. introduced level-wise value evaluation, with colors
indicating which “level” or phase of development a design
choice was made at [28]. As mentioned in Sect. II, Varnum et
al. introduced EVO and the blue-red color scheme with the
aim of making Tropos evidence pairs easier to interpret [9].
BenAyed et al. extended EVO to introduce four more palettes
and a customizable palette option to improve the accessibility
of EVO [29], which was explored in [30] through a user
study. The experimental validation of EVO by Baatartogtokh et
al. [15] is the basis for our replication study.
Visualizations in SE. This study may impact the broader
field of software visualizations [31], [32]. To aid decision-
making for future software development, prior work used
colors to represent properties such as code size within a 3D
visualization of software release histories, helping stakeholders
better understand the system [33]. Feigenspan et al. [34]
used color to highlight program backgrounds to improve code
comprehension and found that subjects favored the use of
color, though color choice is important. Building on these
insights, our findings suggest that users preferentially view
green, rather than blue, as indicative of positive outcomes,
providing further guidance for color choices in SE visual-
izations. This preference may also extend to other types of
visualizations, such as dependency graphs (e.g., [35]).
Replications in SE. Replications are an important but
overlooked aspect of empirical software engineering [36].
Sjøberg et al. found only 18% of surveyed experiments to be
replications. In a subsequent study focused on replications,
da Silva et al. found an increase in replications after the
publication of Sjøberg et al., with the majority being internal
replications [37]. As mentioned in Sect. III, SE researchers
have long discussed the merits of replication types. Basili et
al. [38] and Shull et al. [16] argue for using reference

materials and conducting exact replications, while Miller [39]
and Kitchenham [40] argue for theoretic replications using
different methods and materials to explore the original hy-
potheses. We heed Kitchenham’s warning and based our study
on a strong experimental design with a detailed study guide
(see [19]); thus, our results enable the original and future
researchers to continue building a theory of the impacts of
EVO. We contributed to theory building by extending the
external validity of the original findings. Future theoretic
replications would complement our analysis.

Mendonça et al. proposed the FIRE approach consisting of
two cycles [41]: an internal cycle to improve on the original
study, and an external cycle to independently validate the find-
ings. Gómez et al. proposed five elements that vary between
SE experiments and their replication: site, experimenters,
apparatus, operationalizations, and population properties [17].
Our study used a different site and different population prop-
erties while keeping the apparatus, experimental objects, and
operationalization the same. In subsequent work, Juristo et
al. differentiate between close replications (i.e., pseudo-exact)
and differentiated replication [42]. Finally, Wieringa argued
that researchers should differentiate between replications that
extend statistical inference from samples to populations and
those replications that use cases to test the underlying theory
under analysis [43], with this study being the former.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we replicated the experiment by Baatartogtokh
et al. [15]. We conclude that using EVO to answer goal
modeling questions is associated with faster completion times,
but found no evidence of any impacts on correctness. Subjects
had a positive response to EVO, and preferred it over the
control. We also found no significant differences between
the results of the original experiment and our replication,
allowing us to calculate pooled estimates of EVO’s impact. In
particular, subjects using EVO completed the goal modeling
questions 4.14 minutes (between 30.0% and 41.1%) faster, on
average, than the control. Additionally, we found that most
subjects associated green with good outcomes, while only
a few associate blue (the default color in EVO) with good
outcomes. Thus, we recommend changing the default color
palette of EVO to align with subject expectations and other
goal modeling tools.

In future work, the EVO experiment should be replicated
with trained goal modelers and practitioners to verify if the
results hold among non-novices, as it is unclear if experts
would benefit from the use of EVO, as well as different
experimental objects (i.e., larger models). We also recommend
a head-to-head comparison of the blue-red and the green-red
palettes, with color vision normal and deficient users.
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